

Tetrahedron: Asymmetry 11 (2000) 2023-2031

TETRAHEDRON: ASYMMETRY

Preparation of enantiomerically pure (1S,2S)-1aminocyclopropanephosphonic acid from methylcyclopropanone acetal via spirophosphonate intermediates

Antoine Fadel* and Nicolas Tesson

Laboratoire des Carbocycles (Associé au CNRS), Institut de Chimie Moléculaire d'Orsay Bât. 420, Université de Paris-Sud, 91405 Orsay, France

Received 27 March 2000; accepted 4 April 2000

Abstract

An easy and efficient one-pot reaction from readily available methylcyclopropanone acetal (2S)-4b gave the spirophosphonates **8a–b** with excellent diastereoselectivity. These phosphonates, after catalytic hydrogenolysis and hydrolysis, furnished the enantiomerically pure (1S,2S)-1-amino-2-methylcyclopropane-phosphonic acid 3b (analogue of (1R,2S)-*allo*-norcoronamic acid). © 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

The biologically active phosphonic acids 1 analogues of α -amino acids are finding increasing interest,¹⁻⁴ due to the tetrahedral structure of phosphonic acid moiety, since they act as 'transition-state analogues'.^{5,6} In recent years, 1-aminocyclopropanecarboxylic acids 2 (ACCs) have attracted special attention owing to their use as enzyme inhibitors as well as their incorporation in strained peptides.^{7,8} However, the aminocyclopropanephosphonic acids 3 did not receive the same attention compared to the acyclic aminophosphonic acids 1 and aminocyclopropanecarboxylic acids 2 (Scheme 1).

^{*} Corresponding author. Fax: +33(1)69156278; e-mail: antfadel@icmo.u-psud.fr

To our knowledge only a few methods for the synthesis of this class of compounds **3** have been described in either racemic⁹ or optically active form.¹⁰

We have previously reported a simple and convenient synthesis of 1-aminocyclopropanephosphonic acid (ACC analogue) **3a** ($\mathbf{R} = \mathbf{H}$), in three steps, from cyclopropanone acetal **4a**.¹¹ Similarly, for the preparation of optically active amino acids **2**,¹² we have recently used the same methodology to synthesize (1*S*,2*S*)-1-aminocyclopropanephosphonic acid **3b** [analogue of (1*R*,2*S*)-*allo*-norcoronamic acid **2b** ($\mathbf{R} = \mathbf{CH}_3$)]. This sequence occurred in three steps from the acetal (2*S*)-**4b**, via the iminium **5b** and aminophosphonates **7** in good overall yield (Scheme 2).¹³

In order to obtain alkylaminophosphonic acid (1S,2S)-**3b**, via the cyclic phosphonates **8a**–**b**, we decided in connection with our ongoing program to study the asymmetric addition of triethyl phosphite to the acetal (2S)-**4b**. These reactions should occur in the presence of 2-hydroxyamines **9a**–**b** via the iminium intermediate **5** (Scheme 3).

2. Results and discussion

The synthesis of (1S,2S)-1-amino-2-methylcyclopropanephosphonic acid **3b** was carried out starting from the cyclopropanone acetal (2S)-**4b**. This latter was easily obtained in two steps from commercially available (S)-3-hydroxy-2-methylpropionate.¹⁴ Thus, in a one-pot procedure, the hemiacetal **10** formed in situ from acetal (2S)-**4b** by acidic ethanolysis (EtOH, cat. TMSCI) reacted under acidic conditions with amines **9a–b** to give, via aminols **11a–b**,[†] the iminium intermediate **5**.[‡] The latter underwent phosphite addition to directly furnish a diastereoisomeric mixture of cyclic aminophosphonates **8** and **12** (Scheme 4). Our results are summarized in Table 1.

2024

[†] A spiroamino acetal cannot be obtained by heating **11a**: A. Fadel, unpublished results.

[‡] The formation of a linked phosphite with the hydroxyl group of the amine moiety in **5**, then an intramolecular addition of the resulting phosphite on the iminium function, cannot be excluded.

Scheme 4.

Preparation of spiroaminophosphonates 8 and 12 from acetal (2S)-4b								
		amine 9			condition*	time	yield	
entry	R	R ¹	\mathbf{R}^2	9	AcOH	(h)	(%)	product (ds ratio)
1	Ph	Н	Н	(R)-9a	3 equiv.	113	65	8a : 12a (89 :11)
2	Ph	Η	Н	(R)-9a	2 equiv.	42	71	8a : 12a (89 :11)
3	Н	Me	Ph	9b	2 equiv.	90	36	8b : 12b (78 :22)
* All reactions of acetal (2S)-4b were carried out in the presence of 1.5 equiv. of amine 9,								

1.5 equiv. of P(OEt)₃ and AcOH in EtOH at 55°C

Tabla

The use of triethyl phosphite and amine 9a gave a mixture of spirophosphates 8a and 12a in good yields with the *trans* isomers as the major products (ratio, 89:11) (Table 1, entries 1 and 2). With (-)-norephedrine 9b under the same conditions, the yield and mixture ratios were lower (entry 3). These compounds 8a, 8b, 12a and 12b, obtained as a mixture of epimers at the phosphorus atom in an 80:20 (P*maior:P*minor) ratio, were easily separated by flash chromatography. We observed that the protected hydroxyl amine 9c gave, under the same conditions, the expected phosphonates 7c and 13c (85:15 ratio) in 39% yield, and the cyclic phosphonate 8a (3% yield). The latter was probably formed by cyclization of 7c under reaction conditions (Scheme 5).

Assignment of the stereochemistry of these different compounds was based on ${}^{3}J_{P-H}$ coupling constants between the cyclopropane proton $H-C_1$ and the phosphorus atom. The observed values $({}^{3}J_{PH} = 12.8 \text{ Hz})$ were in agreement with reported values for the *cis* configuration,⁹ and with our previously reported results.¹³ These conclusions were supported by ¹³C NMR spectra of the *cis* 12a by the coupling constants between P and CH₃-C₁ (${}^{3}J_{PC cis} = 5.2$ Hz). Thus, we assigned the S configuration on C_3 for the major **8a-b** and R for the minor **12a-b**. The phosphorus atom configuration was arbitrarily assigned from the optimized energy determined by molecular mechanics (MM2) calculations of 8 and 12 with R configuration for the major epimers.

After separation the major **8a**.**P**_M and the minor epimer **8a**.**P**_m, which were assigned the same configuration *S* at C₃, were hydrogenolyzed separately to give the same compound **14** $([\alpha]_D^{20} = +26.3 \ (c \ 1, \text{ MeOH}))$ in 79% yield. Such epimerization on the phosphorus atom has already been reported by Royer et al. upon hydrogenolysis of cyclic aminophosphonate.¹⁵ This monoester was treated by trimethylsilyl iodide then with propylene oxide in ethanol to lead to enantiomerically pure (1S,2S)-(+)-1-amino-2-methylcyclopropanephosphonic acid **3b** (87% yield, mp = 220–222°C, $[\alpha]_D^{20} = +34 \ (c \ 1, \ H_2O), \ [\alpha]_D^{20} = +45 \ (c \ 0.2, \ H_2O))$. These values are in agreement with our previously reported results,¹³ and with the literature^{10b} for the enantiomer (1R,2R)-**3b**: mp = 245°C (decomp.), $[\alpha]_D^{20} = -46.4 \ (c \ 0.2, \ H_2O)$. Its enantiomeric excess, determined from ¹⁹F NMR analysis of the corresponding Mosher amide,^{13,16} was found to be 98% (Scheme 6).

Scheme 6.

Probably the minor **12a**.**P**_M, isolated by chromatography, was hydrogenolyzed into the monoester **15**, which was treated by ISiMe₃ followed by propylene oxide to furnish the *cis*-amino-phosphonic acid ((1*R*,2*S*)-**16**, $[\alpha]_D^{20} = +23$ (*c* 0.5, H₂O)) (Scheme 7).

In the same way, the major $8b.P_M$ and $8b.P_m$, when hydrogenolyzed separately, gave the same monoester 17 in 86% yield (Scheme 8).

Scheme 8.

3. Conclusion

From the readily available methylcyclopropanone acetal (2S)-4b, we have developed an easy and efficient three-step synthesis of enantiomerically pure (1S,2S)-1-amino-2-methylcyclopropanephosphonic acid 3b. This latter was obtained from the interesting cyclic phosphonate 8a-b in high overall yield. This approach should constitute an efficient way for the synthesis of a wide variety of aminocyclopropanephosphonic acids.

4. Experimental

For general experimental information, see Fadel¹¹ or Fadel and Tesson.¹³

4.1. General procedure

To a solution of cyclopropanone acetal (2S)-4b (520 mg, 3 mmol) in EtOH (6 mL) was added one drop of TMSCl. After 5 min of stirring, chiral amine (*R*)-9a (550 mg, 4.5 mmol), AcOH (360 mg, 6 mmol), and P(OEt)₃ (750 mg, 4.5 mmol) were added successively. The mixture was stirred and heated at 55°C for 42 h. The reaction mixture was concentrated under vacuum, concentrated ammonia (2 mL) was added, and then the mixture was filtered through a 5 cm pad of silica gel and eluted with ether (60 mL). The filtrate was concentrated under vacuum to give crude phosphonates 8a and 12a obtained as two diastereoisomers in an 89:11 ratio. Purification by flash chromatography (FC) twice (eluent, EtOAc:CH₂Cl₂, 1:9 \rightarrow 1:1, or ether) afforded 410 mg (49%) of (1S,2S)-8a.P_M as the major *trans*.major phosphorus atom, 80 mg (9.6%) of (1S,2S)-8a.P_m as the major *trans*.minor phosphorus atom, 39 mg (4.6%) of (1*R*,2*S*)-12a.P_M as the minor *cis*.major phosphorus atom, and 70 mg (8%) as a mixture.

4.1.1. $(1S,3S,4S^*,7R)$ -4-Ethoxy-1-methyl-7-phenyl-5-oxa-8-aza-4-phospha-spiro[2.5]octane 4-oxide 8a.P_M

 $[\alpha]_{\rm D}^{20}$ = +55.4 (*c* 1, CHCl₃); $R_{\rm f}$ = 0.22 (ether); $R_{\rm T}$ = 43.40 min [Cydex B, 170°C (5 min) +1°C/min \rightarrow 180°C (1 h), 1 bar]; IR (neat): 3440, 3265, 1260 (P=O), 1046 (P–O); ¹H NMR (CDCl₃, 250 MHz): δ = 7.54–7.16 (m, 5H), 4.60–4.28 (m, 2H), 4.21 (dq, ³J_{PH} = 1 Hz, J = 7.3 Hz, 2H), 4.30–4.00 (m, 1H, CH-N), 2.05 (br s, NH), 1.80–1.50 (m, 1H_{cycle}), 1.39 (t, J = 7.3 Hz, 3H), 1.50–1.00 (m, 1H_{cycle}), 1.25 (d, J = 5.9 Hz, 3H, CH₃-C₁), 0.46 (ddd, J = 5.4 Hz, J_{PH trans} = 6.8 Hz, J = 8.3 Hz, 1H_{cycle}); ¹³C NMR (CDCl₃, 62.86 MHz): δ = [6 arom. C: 137.2, 128.7 (2C), 128.1, 126.4 (2C)], 70.0 (d, ²J_{PC} = 9.0 Hz, O-CH₂-CH), 61.5 (d, ²J_{PC} = 6.7 Hz, 1C), 58.8 (d, ³J_{PC} = 5.3 Hz, CH-N), 34.8 (d, ¹J_{PC} = 193.5 Hz, C₃), 17.5 (C₁), 17.4 (C₂), 16.5 (d, ³J_{PC} = 5.3 Hz, CH₃-CH₂-O), 10.6 (CH₃-C₁); ³¹P NMR (CDCl₃, 101.25 MHz): δ = 18.61; MS (70 eV); *m*/*z* (%): 282 (M⁺+1, 6), 281 (M⁺, 31), 252 (19), 171 (12), 104 (100), 103 (48); HRMS *m*/*z*: 281.1183 (calcd for C₁₄H₂₀NO₃P: 281.1180).

4.1.2. $(1S,3S,4R^*,7R)$ -4-Ethoxy-1-methyl-7-phenyl-5-oxa-8-aza-4-phospha-spiro[2.5]octane 4-oxide 8a.P_m

 $[\alpha]_{D}^{20} = +32.6 \ (c \ 0.75, \ CHCl_3); R_f = 0.18 \ (ether); R_T = 38.42 \ min \ [Cydex B, 170^{\circ}C \ (5 \ min) +1^{\circ}C/min \rightarrow 180^{\circ}C \ (1 \ h), 1 \ bar]; IR \ (neat): 3435, 3265, 1260 \ (P=O), 1046 \ (P-O); ^1H \ NMR \ (CDCl_3, 250 \ MHz): \delta = 7.40-7.20 \ (m, \ 5H), 4.70 \ (ddd, \ J = 4.4 \ Hz, \ J = 9.7 \ Hz, \ J_{ab} = 14.4 \ Hz, \ 1H), 4.47 \ (ddd, \ J = 4.4 \ Hz, \ J = 9.7 \ Hz, \ J_{ab} = 14.4 \ Hz, \ 1H), 4.47 \ (ddd, \ J = 4.4 \ Hz, \ J = 9.7 \ Hz, \ J_{ab} = 14.4 \ Hz, \ 1H), 4.47 \ (ddd, \ J = 4.4 \ Hz, \ J = 9.7 \ Hz, \ J_{ab} = 14.4 \ Hz, \ 1H), 4.47 \ (ddd, \ J = 4.4 \ Hz, \ J = 9.7 \ Hz, \ J_{ab} = 14.4 \ Hz, \ 1H), \ 4.47 \ (ddd, \ J = 4.4 \ Hz, \ J = 9.7 \ Hz, \ J_{ab} = 14.4 \ Hz, \ J = 9.7 \ Hz, \ J_{ab} = 14.4 \ Hz, \ J = 14.4 \ Hz, \ J = 10.4 \ Hz,$

J=3.7 Hz, J=11.4 Hz, $J_{ab}=14.4$ Hz, 1H), 4.30–4.10 (m, 2H and CH-N), 2.32 (br s, NH), 1.55–1.00 (m, $2H_{cycle}$), 1.31 (t, J=7.2 Hz, 3H), 1.23 (d, J=5.8 Hz, 3H, CH_3 -C₁), 0.39 (ddd, J=5.9 Hz, J=6.7 Hz, J=8.4 Hz, $1H_{cycle}$); ¹³C NMR (CDCl₃, 62.86 MHz): $\delta = [6 \text{ arom. C: } 137.8, 128.7 (2C), 128.0, 126.9 (2C)]$, 75.3 (d, $^2J_{PC}=6.7$ Hz, O-CH₂-CH), 62.6 (d, $^2J_{PC}=6.7$ Hz, O-CH₂), 58.6 (d, $^3J_{PC}=5.2$ Hz, CH-N), 35.0 (d, $^1J_{PC}=193.5$ Hz, C₃), 18.2 (C₁), 17.5 (C₂), 16.6 (d, $^3J_{PC}=5.2$ Hz, O-CH₂-CH₃), 10.9 (CH₃-C₁); ³¹P NMR (CDCl₃, 101.25 MHz): $\delta = 19.86$; MS (70 eV); m/z (%): 282 (M⁺+1, 3), 281 (M⁺, 15), 252 (12), 156 (11), 105 (13), 104 (100), 103 (31).

4.1.3. (1S,3R,4R*,7R)-4-Ethoxy-1-methyl-7-phenyl-5-oxa-8-aza-4-phospha-spiro[2.5]octane 4-oxide 12a. P_M

 $[\alpha]_{D}^{20} = +57 \ (c \ 1.45, \ CHCl_3); \ R_f = 0.28 \ (ether); \ R_T = 41.27 \ min \ [Cydex B, 170°C \ (5 \ min) +1°C/min \rightarrow 180°C \ (1h), 1 \ bar]; \ ^1H \ NMR \ (CDCl_3, 250 \ MHz): \delta = 7.44-7.15 \ (m, 5H), 4.54-4.10 \ (m, 5H, CH_2-O, CH_2-O \ and N-CH), 2.15 \ (br \ s, NH), 1.41 \ (t, J = 7.2 \ Hz, CH_3-CH_2-O), 1.34 \ (d, J = 5.8 \ Hz, CH_3-C_1), 1.40-1.10 \ (m, 2H_{cycle}), 1.10-0.96 \ (m, 1H_{cycle}); \ ^{13}C \ NMR \ (CDCl_3, 62.86 \ MHz): \delta = [6 \ arom. \ C: 137.0, 128.8 \ (2C), 128.2, 126.5 \ (2C)], 76.8 \ (C_6), 61.3 \ (d, \ ^2J_{PC} = 6.2 \ Hz, O-CH_2-CH_3), 58.1 \ (d, \ ^3J_{PC} = 4.8 \ Hz, CH-N), 37.1 \ (d, \ ^1J_{PC} = 192.5 \ Hz, C_3), 21.9 \ (C_1), 20.2 \ (d, \ ^2J_{PC} = 3.8 \ Hz, C_2), 16.6 \ (d, \ ^3J_{PC} = 5.4 \ Hz, O-CH_2-CH_3), 13.8 \ (d, \ ^3J_{PC} \ cis = 5.2 \ Hz, CH_3-C_1);$

4.1.4. $(1S,3S,4S^*,6R,7S)$ -4-Ethoxy-1,7-dimethyl-6-phenyl-5-oxa-8-aza-4-phospha-spiro[2.5]octane 4-oxide **8b**.**P**_M

Following the procedure: Chiral acetal (2S)-4b (350 mg, 2 mmol), TMSCl (cat.), norephedrine (1R,2S)-9b (450 mg, 3 mmol), EtOH (7 mL) and P(OEt)₃ (500 mg, 3 mmol) gave, after heating at 55°C for 90 h and the usual work up, 500 mg of crude cyclic phosphonates as a mixture of 8b and 12b in a 78:22 ratio. Purification by FC (twice) afforded 115 mg (19.5%) of (1S,3S)-8b.P_M as the major *trans.*major phosphorous atom, 32 mg (5.5%) of (1S,3R)-12b.P_M as minor *cis.*major phosphorus atom, and 25 mg (4%) as a mixture.

4.1.4.1. Data for (1S,3S)-8b.P_M. $[\alpha]_D^{20} = +40.4$ (c 1, CHCl₃); mp = 142.0–146.0°C; R_f=0.24 (EtOAc:CH₂Cl₂, 15:85); IR (neat): 3296 (NH), 1248 (P=O), 1195, 1053 (P–O); ¹H NMR (CDCl₃, 250 MHz): $\delta = 7.42-7.18$ (m, 5H), 5.55 (dd, J = 2.0 Hz, ${}^{3}J_{PH} = 2.5$ Hz, H-C₆), 4.24–3.95 (m, 2H, CH₂-O), 3.01 (dq, J = 2.0 Hz, J = 7.4 Hz, 1H-C₇), 2.35 (br s, NH), 1.78–1.53 (m, H-C₁), 1.29 (t, J = 7.4 Hz, 3H), 1.40–1.15 (m, 1H-C₂), 1.12 (d, J = 6.3 Hz, 3H, CH₃-C₁), 0.90 (d, J = 7.4 Hz, 3H, CH₃-C₇), 0.31 (ddd, J = 5.2 Hz, J = 6.8 Hz, J = 8.8 Hz, 1H-C₂); ¹³C NMR (CDCl₃, 62.86 MHz): $\delta = [6 \text{ arom. C: } 137.8$ (d, ${}^{3}J_{PC} = 5.2$ Hz, 1C), 128.3 (2C), 127.6 (1C), 124.9 (2C)], 87.5 (d, ${}^{2}J_{PC} = 8.6$ Hz, C₆), 61.3 (d, ${}^{2}J_{PC} = 6.7$ Hz, 1C), 53.3 (d, ${}^{3}J_{PC} = 4.7$ Hz, C₇), 31.4 (d, ${}^{1}J_{PC} = 188.2$ Hz, C₃), 19.9 (d, ${}^{3}J_{PC} = 5.8$ Hz, 1C), 16.5 (C₂), 16.45 (d, ${}^{2}J_{PC} = 5.2$ Hz, C₁), 12.2 (CH₃-C₇), 10.8 (CH₃-C₁); ³¹P NMR (CDCl₃, 101.25 MHz): $\delta = 21.36$; MS (EI), m/z (%): 296 (M⁺⁺1, 5), 295 (M⁺, 5), 178 (100), 118 (82), 117 (71), 97 (52), 91 (56); HRMS, m/z: 295.1344 (calcd for C₁₅H₂₂NO₃P: C, 61.01; H, 7.51; N, 4.74. Found: C, 60.73; H, 7.68; N, 4.52.

4.1.5. (1S,3S,4R*,6R,7S)-4-Ethoxy-1,7-dimethyl-6-phenyl-5-oxa-8-aza-4-phospha-spiro[2.5]octane 4-oxide 8b.P_m

 $[\alpha]_D^{20} = -12.1; \ [\alpha]_{365}^{20} = -30 \ (c \ 0.35, \ CHCl_3); \ R_f = 0.07 \ (EtOAc:CH_2Cl_2, \ 15:85); \ IR \ (neat): \ 3300 \ (NH), \ 1245 \ (P=O), \ 1195, \ 1053 \ (P-O); \ ^1H \ NMR \ (CDCl_3, \ 250 \ MHz): \ \delta = 7.45 - 7.15 \ (m, \ 5H), \ 5.83$

(dd, J=3.4 Hz, ${}^{3}J_{PH}=3.9$ Hz, 1H-C₆), 4.17 (dq, ${}^{3}J_{PH}=8.3$ Hz, J=7.3 Hz, 2H), 3.25 (dq, J=3.4 Hz, J=6.8 Hz, 1H-C₇), 2.24 (br s, NH), 1.55–1.00 (m, 2H *c*-propyl), 1.33 (t, J=7.3 Hz, 3H), 1.17 (d, J=6.0 Hz, 3H, CH₃-C₁), 0.85 (d, J=6.8 Hz, 3H, CH₃-C₇), 0.45 (ddd, J=4.9 Hz, J=6.8 Hz, J=8.3 Hz, 1H-C₂); 13 C NMR (CDCl₃, 62.86 MHz): $\delta = [6 \text{ arom. C: } 137.6$ (d, ${}^{3}J_{PC}=5.5$ Hz, 1C), 128.3 (2C), 127.6 (1C), 125.4 (2C)], 84.5 (d, $J_{PC}=6.9$ Hz, C₆), 62.5 (d, ${}^{2}J_{PC}=6.6$ Hz, 1C), 53.4 (d, ${}^{3}J_{PC}=4.1$ Hz, C₇), 33.0 (d, ${}^{1}J_{PC}=188.6$ Hz, C₃), 19.0 (d, ${}^{3}J_{PC}=2.6$ Hz, 1C), 18.0 (C₂), 16.6 (d, ${}^{2}J_{PC}=5.3$ Hz, C₁), 13.0 (CH₃-C₇), 12.1 (CH₃-C₁); 31 P NMR (CDCl₃, 101.25 MHz): $\delta = 22.99$; MS (70 eV); m/z (%): 296 (M⁺+1, 2), 295 (M⁺, 4), 178 (93), 177 (21), *118* (100), 117 (69), 97 (44), 91 (27); HRMS m/z: 295.1340 (calcd for C₁₅H₂₂NO₃P: 295.1337).

4.1.6. (1S,3R,4R*,6R,7S)-4-Ethoxy-1,7-dimethyl-6-phenyl-5-oxa-8-aza-4-phospha-spiro[2.5]octane 4-oxide 12b.P_M

From a mixture we can read: $R_f = 0.15$ (EtOAc:CH₂Cl₂, 15:85); ¹H NMR (CDCl₃, 250 MHz): $\delta = 7.45 - 7.15$ (m, 5H), 5.58 (dd, J = 2.4 Hz, J = 2.3 Hz, 1H-C₆), 4.30–4.03 (m, 2H), 3.15 (dq, J = 2.3 Hz, J = 7.3 Hz, 1H-C₇), 1.56 (br s, NH), 1.40–1.30 (m, 1H_{*c*-propyl}), 1.33 (t, J = 6.8 Hz, 3H), 1.32 (d, J = 6.3 Hz, 3H, CH₃-C₁), 1.30–0.90 (m, 2H_{*c*-propyl}), 0.98 (d, J = 7.3 Hz, 3H, CH₃-C₇); ¹³C NMR (CDCl₃, 50.29 MHz): $\delta = [6$ arom. C: 137.8 (d, ³J_{PC} = 5.0 Hz, 1C), 128.4 (2C), 127.7 (1C), 125.0 (1C)], 87.2 (d, ²J_{PC} = 9.0 Hz, C₆), 61.0 (d, ²J_{PC} = 7.1 Hz, 1C), 54.6 (d, ³J_{PC} = 3.9 Hz, C₇), 32.3 (d, ¹J_{PC} = 196.9 Hz, C₃), 22.8 (d, ²J_{PC} = 4.0 Hz, C₂), 19.1 (1C), 16.6 (d, ²J_{PC} = 5.9 Hz, C₁), 13.8 (d, ³J_{PC cis} = 5.9 Hz, CH₃-C₁), 11.2 (CH₃-C₇).

4.2. Diethyl (1S,2S,1'R)-1-(2-methoxy-1-phenylethylamino)-2-methylcyclopropanephosphonate 7c

Following the procedure: acetal **4b** (2 mmol) and amine **9c** (616 mg, 3 mmol) gave, after FC (twice), 185 mg (27%) of **7c**, 18 mg (3%) of spirophosphonate **8a**.**P**_M and 37 mg (5.2%) as a mixture of **7c**, **8a**.**P**_M and minor **13c**. $[\alpha]_D^{20} = -38.7$ (*c* 1, CHCl₃); $R_f = 0.23$ (EtOAc:CH₂Cl₂, 1:1); $R_T = 24.37$ min [Cydex B, 170°C (5 min) +1°C/min \rightarrow 180°C (1 h), 1 bar]; IR (neat): 3430 (NH), 1240 (P=O), 1030 (P–O); ¹H NMR (CDCl₃, 250 MHz): $\delta = 7.45-7.15$ (m, 5H), 4.20 (m, 1H), 4.13–3.77 (m, 4H), 3.60–3.25 (m, 2H), 3.29 (s, 3H), 2.10 (br s, NH), 1.53–1.05 (m, 2H_{cycle}), 1.23 (t, *J*=7.3 Hz, 3H), 1.21 (t, *J*=7.3 Hz, 3H), 0.98 (d, *J*=6.6 Hz, CH₃-C₂), 0.60 (m, 1H_{*c*-propyl}); ¹³C NMR (CDCl₃, 62.86 MHz): $\delta =$ [6 arom. C: 142.5 (1C), 127.9 (2C), 127.8 (2C), 127.0 (1C)], 77.0 (CH₂-CH-N), 61.65 (d, ³*J*_{PH}=6.2 Hz, 1C), 61.6 (d, ³*J*_{PH}=6.2 Hz, 1C), 60.3 (CH-N), 58.8 (CH₃-O), 35.8 (d, ¹*J*_{PC}=207.8 Hz, C₁), 18.8 (C₃), 18.4 (d, ²*J*_{PC}=4.3 Hz, C₂), 16.4 (1C), 16.3 (1C), 11.9 (CH₃-C₂); ³¹P NMR (CDCl₃, 101.25 MHz): $\delta = 28.93$; MS (70 eV); *m/z* (%): 341 (M⁺, 1), 296 (27), 295 (29), 172 (87), 171 (41), *103* (100), 102 (38), 91 (36); HRMS *m/z*: 341.1753 (calcd for C₁₇H₂₈NO₄P: C, 59.81; H, 8.27; N, 4.01. Found: C, 59.62; H, 7.48; N, 4.23.

4.3. Ethyl (1S,2S)-1-amino-2-methylcyclopropanephosphonate 14

Following a reported procedure:¹¹ cyclic phosphonate **8a**.**P**_M (197 mg, 0.7 mmol), EtOH (4 mL) and 20% Pd(OH)₂/C (Pearlman's catalyst, 90 mg) under H₂ (1 atm) gave, after 6 h and FC (eluent 50:50, MeOH:EtOAc), 99 mg (79%) of (1*S*,2*S*)-**14** as a white solid. $[\alpha]_D^{20} = +26.3$ (*c* 1, MeOH); mp = 169.7°C (decomp.); $R_f = 0.21$ (MeOH:CH₂Cl₂, 1:1); IR (neat): ¹H NMR (D₂O, HOD, 4.6 ppm, 250 MHz): $\delta = 3.74$ (dq, ³*J*_{PH} = 6.7 Hz, *J* = 7.1 Hz, 2H), 1.30–1.03 (m, 1H), 1.03 (t, *J* = 7.1 Hz, 3H), 1.03–0.80 (m, 1H_{cycle}), 0.95 (d, *J* = 6.3 Hz, 3H), 0.39 (ddd, *J_{trans}* = 6.6 Hz,

 $J_{gem} = 6.4$ Hz, ${}^{3}J_{PH \ trans} = 6.8$ Hz, 1H); ${}^{13}C$ NMR (D₂O, 82.86 MHz): $\delta = 61.5$ (d, ${}^{2}J_{PC} = 5.7$ Hz, 1C), 32.1 (d, ${}^{1}J_{PC} = 195.4$ Hz, C₁), 16.7 (C₃), 16.1 (d, ${}^{2}J_{PC} = 5.2$ Hz, C₂), 14.9 (1C), 10.9 (1C); ${}^{31}P$ NMR (D₂O, 101.25 MHz): $\delta = 19.29$.

4.4. Ethyl (1S,2S,1'S)-2-methyl-1-(1'-methyl-2-phenylethylamino)cyclopropanephosphonate 17

Following a reported procedure:¹¹ cyclic phosphonate **8b**.**P**_M (60 mg, 0.2 mmol), AcOH (2 mL) and 20% Pd(OH)₂/C (25 mg), under H₂ (1 atm) gave, after 4 h and FC (eluent 20:80, MeOH:CH₂Cl₂), 51 mg (86%) of (1*S*,2*S*)-**17**. $[\alpha]_D^{20} = +13.7$ (*c* 0.9, MeOH); IR (neat): 3600–3200 (NH₃⁺, OH), 2750 (P–OH), 1602, 1216 (P=O), 1052 (P–O); ¹H NMR (*d*₄-MeOH, 4.78 ppm, 200 MHz): $\delta = 7.30-7.00$ (m, 5H), 4.28–4.02 (m, 1H), 3.85 (dq, ³*J*_{PH} = 7.2 Hz, *J* = 7.3 Hz, 2H), 3.21 (dd, *J* = 3.8 Hz, *J* = 12.6 Hz, 1H_{benzyl}), 2.43 (dd, *J* = 10.5 Hz, *J* = 12.6 Hz, 1H_{benzyl}), 1.67 (m, 1H-C₂), 1.44–1.20 (m, 1H_c-propyl), 1.20 (d, *J* = 6.4 Hz, 3H, CH₃-C₂), 1.10 (t, *J* = 7.3 Hz, 3H, CH₃-CH₂-O), 1.07 (d, *J* = 7.0 Hz, 3H), 0.58 (ddd, *J* = 6.2 Hz, *J* = 6.4 Hz, *J* = 6.6 Hz, 1H_{cycle}); ¹³C NMR (*d*₄-MeOH, 49 ppm, 62.86 MHz): $\delta = [6 \text{ arom. C: } 138.1 (1C), 130.4 (2C), 129.8 (2C), 128.1 (1C)], 61.9 (d, ²$ *J*_{PC} = 6 Hz, 1C), 57.5 (CH-N), 40.9 (1C, benzyl), 39.0 (d, ¹*J*_{PC} = 190.0 Hz, C₁), 17.8 (1C), 17.3 (d, ²*J*_{PC} = 6.1 Hz, C₂), 17.0 (1C), 16.4 (C₃), 12.1 (CH₃-C₂); ³¹P NMR (*d* $₄-MeOH, 101.25 MHz): <math>\delta = 12.53$.

4.5. (1S,2S)-1-Amino-2-methylcyclopropanephosphonic acid 3b

Trimethylsilyl iodide (300 mg, 1.5 mmol) was added dropwise to a stirred solution of the monoethyl phosphonate **14** (90 mg, 0.50 mmol) in CH₂Cl₂ (5 mL), and stirring was continued at room temperature for 30 min. Organic solvents were removed under vacuum, and a mixture of EtOH (3 mL) was added with stirring. After complete precipitation, the pure aminophosphonic acid **3b** was filtered off, giving after crystallization from (ϵ .H₂O, MeOH/Et₂O) 65 mg (86%) as a white solid (dried under high vacuum). [α]_D²⁰ = +34 (*c* 1, H₂O), [α]_D²⁰ = +45 (*c* 0.2, H₂O) [lit.^{10b} for an enantiomer (1*R*,2*R*)-**3b** [α]_D²⁰ = -46.4 (*c* 0.2, H₂O); mp = 220–222°C (decomp.), lit.⁹ mp = 224–225°C (decomp.)]; *R*_f = 0.41 (H₂O:MeOH, 1:9); IR (KBr): 3600–3100 (OH and NH[‡]), 1190 (P=O), 1050 (P–O); ¹H NMR (D₂O, 250 MHz): δ = 1.28 (dddd, *J_{cis}* = 9.4 Hz, *J_{trans}* = 6.8 Hz, *J*=6.4 Hz, ³*J*_{PH cis} = 12.7 Hz, 1H-C₂), 0.58 (ddd, *J_{cis}* = 9.4 Hz, *J_{gem}* = 6.4 Hz, ³*J*_{PH cis} = 12.7 Hz, 1H); ¹³C NMR (D₂O, 62.86 MHz): δ = 33.6 (d, ¹*J*_{PC} = 192.5 Hz, C₁), 16.0 (C₃), 14.8 (C₂), 10.9 (CH₃-C₂); ³¹P NMR (D₂O, 101.25 MHz): δ = 13.36; anal. calcd for C₄H₁₀NO₃P (151.1029): C, 31.80; H, 6.67; N, 9.27. Found: C, 31.88; H, 6.32; N, 8.88.

4.6. (1R,2S)-1-Amino-2-methylcyclopropanephosphonic acid 16

From minor **12a** following the procedure used for (1*S*,2*S*)-**3b**, we obtained 10 mg (78% overall yield) of (1*S*,2*S*)-**16**. $[\alpha]_D^{20} = +23$ (*c* 0.5, H₂O); mp = 234–236°C (decomp.); $R_f = 0.41$ (H₂O:MeOH, 1:9); ¹H NMR (D₂O, 250 MHz): $\delta = 1.23$ (dddd, $J_{cis} = 11.8$ Hz, $J_{trans} = 5.1$ Hz, J = 6.4 Hz, ${}^{3}J_{PH trans} = 6.8$ Hz, 1H-C₂), 1.04 (d, J = 6.4 Hz, 3H, CH₃-C₂), 0.98 (ddd, $J_{trans} = 5.1$ Hz, $J_{gem} = 6.2$ Hz, ${}^{3}J_{PH cis} = 10.8$ Hz, 1H), 0.79 (ddd, $J_{cis} = 11.8$ Hz, $J_{gem} = 6.2$ Hz, ${}^{3}J_{PH trans} = 6.2$ Hz, 1H); ${}^{13}C$ NMR (D₂O, 62.86 MHz): $\delta = 34.0$ (d, ${}^{1}J_{PC} = 191.6$ Hz, C₁), 17.9 (C₃), 16.7 (C₂), 12.6 (d, ${}^{3}J_{PC cis} = 3.4$ Hz, CH₃-C₂); ${}^{31}P$ NMR (D₂O, 101.25 MHz): $\delta = 11.48$; in agreement with our previously reported data.¹³

References

- 1. For a comprehensive review, see: Dhawan, B.; Redmore, D. Phosphorus, Sulfur Relat. Elem. 1987, 32, 119-144.
- 2. Kafarski, B.; Lejczak, B. Phosphorus, Sulfur and Silicon 1991, 63, 193-215.
- 3. De Lombaert, S.; Blanchard, L.; Tan, J.; Sakane, Y.; Berry, C.; Ghai, R. D. *Bioorg. Med. Chem. Lett.* 1995, *5*, 145–150.
- 4. Atherton, F. R.; Hassall, C. H.; Lambert, R. W. J. Med. Chem. 1986, 29, 29-40, and references cited therein.
- 5. Wolfenden, R. Annu. Rev. Biophys. Bioeng. 1976, 5, 271-306; Chem. Abstr. 1976, 85, 73952b.
- 6. Jacobsen, N. E.; Bartlett, P. A. J. Am. Chem. Soc. 1981, 103, 654-657.
- For some recent reviews, see: (a) Stammer, C. *Tetrahedron* 1990, 46, 2231–2254; (b) Alami, A.; Calmes, M.; Jacquier, R. *Bull. Soc. Chim. Fr.* 1993, 130, 5–24.
- (a) Burgess, K.; Kwok-Kan, H.; Destradi, M. S. Synlett 1994, 575–583; (b) Jimenez, J. M.; Rife, J.; Ortuño, R. M. Tetrahedron: Asymmetry 1996, 7, 537–558.
- 9. For a synthesis of racemic substituted α -aminocyclopropanephosphonic acid, see: Groth, U.; Lehmann, L.; Richter, L.; Schöllkopf, U. *Liebigs Ann. Chem.* **1993**, 427–431.
- For an optically active synthesis, see: (a) Yamazaki, S.; Takada, T.; Moriguchi, Y.; Yamabe, S. J. Org. Chem. 1998, 63, 5919–5928. (b) Hercouet, A.; Le Corre, M.; Carboni, B. Tetrahedron Lett. 2000, 41, 197–199.
- 11. Fadel, A. J. Org. Chem. 1999, 64, 4953-4955.
- 12. (a) Fadel, A. Synlett **1993**, 503–505; (b) Fadel, A.; Khesrani, A. Tetrahedron: Asymmetry **1998**, 9, 305–320, and references cited therein.
- 13. Fadel, A.; Tesson, N. Eur. J. Org. Chem. 2000, in press.
- 14. Fadel, A.; Canet, J.-L.; Salaün, J. Synlett 1990, 89-91, see also Ref. 12b.
- 15. Maury, C.; Wang, Q.; Gharbaoui, T.; Chiadmi, M.; Tomas, A.; Royer, J.; Husson, H.-P. *Tetrahedron* 1997, 53, 3627–3636.
- 16. Mosher, H. S.; Dale, J. A.; Dull, D. L. J. Org. Chem. 1969, 34, 2543-2549.